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Description of Progress:

Another Toy Problem for Learning Pattern Trees

An artificial problem was constructed and described in the last report. During
this quarter, another, more difficult, artificial problem was constructed. As before,
the objects to be found and some potential false positives each have component
patterns. Each positive has two different component patterns chosen from three
types. In addition, the rectangles which form the objects and the sub-patterns all
have artificial shadows added (Figure 1). The angle of the shadow is randomly-
chosen. The potential false positive objects either have two component patterns of
the same type, or only one pattern of some type, and one or both of the component
patterns may not have a shadow. Thus the pattern tree must detect all three types of
components with shadows to be able to detect a positive. As in the previous simpler
problem, the positives and potential false-positives are 18-by-11 pixel rectangles, but
now their brightness is randomly-chosen between 136 to 247. The sub-patterns have
a brightness that is independently chosen at random from the same range, but both
patterns (if there are two in an object) have the same brightness. The component

patterns are three-by-three x, +, and square patterns. ._“
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FIGURE 1. Examples of Positives and Potential False Positives. Each positive has two different
patterns which are either an "x", a "+", or a square. Positive objects always have shadows. Negatives
(lower half) always have one kind of pattern, and may have zero or two patterns, and the patterns do
not always have shadows.

A background of noise is added to make identification from residual features
at low resolution difficult. The background is Gaussian noise with a spectrum that is
approximately proportional to 1/ f. This spectrum is obtained by adding Gaussian
white noise to levels 0-4 of a Laplacian pyramid and to level 5, which is treated as an
image in the Gaussian pyramid. A full-resolution noise image is constructed from
these in the usual way. This gives significant noise at the pyramid levels which will
be used in the pattern tree, and significant variation in the background brightness
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local to each object. The objects are sometimes brighter and sometimes darker than
the surrounding background.
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FIGURE 2. Entire Training Image.

The objects, positive and potential false-positive, are arranged in a ten-by-
twenty array, with one-hundred positives in the upper half of the image and one
hundred negatives in the lower half. The horizontal and vertical spacings between
the objects are twice their width and height, respectively, and they are spaced this far
from the borders of the image, as well (Figure 2).
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A three-level Gaussian pyramid of the training image was made. Each neural
net received as input a five-by-five window of pixels from the appropriate pyramid
level.

As before, we call those networks which were trained with inputs from the
image “component” networks, and those networks with inputs from the
component networks “integration” networks. We further refer to them by the
pyramid level at which each is used to search, level 0 being the full-size image and
level 2 having one-quarter of the linear extent of the full-size image.

For the training of the component networks at levels 2 and 1, the training
objective function is a sum over the positive "blobs” of the minimum of the cross-
entropy errors at the positions in the blob, plus a sum over negative points of the
cross-entropy error at those points. A weight-decay term was added, and roughly
optimized over the regularization constant. For the level-0 component networks,
the new “blob-wise Approximate Feature-Discovery” objective function was used
(see below). We are still in the process of training the level-1 integration network.

The Feature-Discovery Objective Functions

In our previous work, we have used the objective function with a term
ep(w)=r)1cl€i;1(——log(y(x,w))) for each positive blob P , and —log(l-y(x,w)) at each
negative position x. y is the network output and w is the parameter vector of the
network. We have noted that this is an ad hoc choice, with no firm theoretical
basis, and that some problems with the results of training may be due to the lack of
rational basis for this objective.

In the past quarter we have invented objective functions that we call Feature-
Discovery objectives. These measure the probability p,, that, if a pixel is detected by
a network, the pixel will be within an example of the class of objects we wish to
detect. This probability is estimated using Bayesian arguments. The exact

expression given a particular prior for p,, is

— 1 n (1-u)y(x)
Poa = | A—w)| 2=+ = 1 | (1= uy(x)) du
0=, ( N 2 1-uy(x) H (EQ1)

where n, is the number of pixels within the positive examples, N is the total
number of pixels, and X,,, is the set of all pixel locations within positive examples.
Note that this is the mean value of p,,, since the training data does not determine
an exact value, only a posterior distribution for it.

We have used the negative logarithm of Equation 1 for training on a toy
problem. The integral was evaluated numerically. This is slow, but feasible.

Because Equation 1 is rather complex and its use is expensive, we derived an
approximation to it. This is
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2n, I N+ D y(x)

XEXpm

2+ Zy(x) (EQ?2)

Allx

pold =

As an objective function we have been using one minus this expression.

Note the intuitive interpretation of Equation 2: The sum in the numerator is
the mean number of detections in the positive examples, while the sum in the
denominator is the mean number of detections anywhere. The ratio of these would
be a typical estimate of p,,, i.e., what fraction of the detected pixels were in positive
examples, except the detections are not definite, so we use mean values. The simple
ratio fails when there are no detections. In this case, Equation 2 becomes n,/N,
which is just the probability that a pixel chosen at random from the training data
would be in a positive example. This is a reasonable choice if we have never seen
an example of a detected pixel, since a detection is irrelevant information in that
case. The 2’s in the numerator and denominator arise naturally, but probably are
not terribly critical. See the attached report, “Learning to Detect Characteristic Sub-
Patterns,” for details of the derivations, and for a description of an artificial problem
on which this was tried. (This report has not been published or submitted for
publication.) In the artificial problem, the objective successfully trained networks to
detect sub-features which were not always present in the positive regions, even
though the training procedure treats all positive objects the same, whether or not
they have a feature.

Equations 1 and 2 are pixel-wise functions, which seems like a rational
approach, since in application the network output will be evaluated on each pixel,
and if it is large we would conclude that an object is likely to contain that pixel.
However, these objectives can reward a network for multiple detections within a
single object. This is not a bad thing, but it would be better if the network was
rewarded for detecting fewer features in more objects, rather than more features in
fewer objects. To accomplish this, it is easy to modify Equation 2 by replacing the
probabilities of detecting pixels with the probabilities of detecting blobs. The positive
blobs are determined in the training data. For negative blobs, we either choose to
cut the negative portions of the image into squares of about the same size as the
objects, or they are given to us by lower-resolution networks in a coarse-to-fine

search system.

With the usual interpretation of the network’s output y as the probability of
the presence of some object or feature, the probability of detecting a blob i is
7z, =1- H(l— y(x)). This is simply one minus the probability of detecting no pixels

xeBlob i

in the blob. The resulting error function is

2, I N+ D%
Positive Blobs {

ﬁpbld = o zzi (EQ3)

All Blobs {
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where n, is the number of positive blobs and N, is the total number of blobs. This

is the mean probability that a given blob contains a positive, given that the feature
detector detected at least one pixel in it. On the artificial problem this worked much
better than Equation 2. For discovering the features in the second pattern tree
artificial problem (described above), this tended to get stuck in very flat regions of
weight space in which all blobs have high probability of being detected. To avoid
this, we first trained for a small number of iterations with Equation 2, and then
switched to Equation 3. This seemed to give good results almost all of the time.

Training with Errors in the Desired Outputs

In a previous ARPA project, objective functions were developed for
classification tasks when there are errors in the desired outputs in the training data.
In this case, the training data is a set of feature vectors, each associated with a desired
output. The desired output is either a binary or one-of-N value. This is very
different from the uncertain-object-position objective, since in that case we know
that an object is present, but our knowledge of its position is poor. Here, there is no
position, just a certain probability that the correct class for a feature vector should
have been one thing, given the class in the so-called desired outputs. We spent a
small amount of time refining this work, and working on a report about it. See the
attached report, “Dealing with Errors in Training Data for Classification Problems.”
This is not directly relevant to our current artificial problems, but it may become
relevant if we have problems in which the training data incorrectly classifies
locations in the images, and doesn’t merely give wrong positions for correctly
classified objects. (This report has not been published or submitted for publication,
since there is still a lot that can be developed along these lines.)

Multi-resolution Shape Features

Our previous work has focused on fairly low level features as input to our
hierarchical neural network. For example, we have shown how one can apply
Laplacian and oriented band-pass operators to construct a feature vector which is
useful for detection of small objects (i.e. objects occupying only a few pixels in the
image, such as buildings and microcalcifications). Important to note is that for these
small objects, features describing details of shape are not particularly important for
detection. However, when objects become larger, shape begins to play a more
important role. For instance, we applied our hierarchical neural network, using low
level features to the problem of detecting aircraft in aerial images. These aircraft are
significantly larger than the buildings or microcalcifications we had considered
previously (aircraft ranged from 20x20 to 50x50 pixels in size). Results indicate that
low level features are not the most effective for detecting these larger objects having

parts
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Figure 1: Method for constructing multi-resolution curvature profile of object
border.

One approach for dealing with large objects is to automatically learn a set of
features for the object class (see section on Feature Discovery). A second avenue we
have been investigating is the use of higher level features which are more
descriptive, in terms of object shape. For example, in breast imaging, high resolution
MRI is often used diagnostically. Radiologists have found that the shape of the
border is highly correlated with the probability and degree of malignancy of a lesion.
Lesions which have smooth borders tend to be benign while lesions with rough,
spiculated borders, are more likely malignant. One method of representing border
shape is the curvature profile of the border at multiple scales. A distinction between
benign and malignant lesions might therefore be represented in the multi-scale
curvature profiles along a lesion border.

We have developed an algorithm for constructing a multi-scale curvature
profile of a lesion (see figure 1). The first step in the algorithm is to construct a
change image by subtracting pre and post contrast MR images. A contour is then
placed around a suspect lesion and, using a dynamic contour algorithm, shrink-
wraps around the lesion. The shrink wrapped contour defines a path over which a
tangent profile can be constructed using the output of multi-scale orientation
operators. Using the first derivative of a Gaussian, the tangent profiles are
transformed into curvature profiles. Figure 2 shows results for two different
Jesions. The border of lesion 1 is smoother than that of lesion 2 and therefore lesion
2 is more likely cancerous. This can be seen in the curvature profiles and also the
variance of the profiles (see table 1). The next planned step is to extract features
from these multi-scale curvature profiles (these feature could be the variances,
Fourier Descriptors, or even the signal itself) as an input into our hierarchical
neural network classifier . The network would then integrate low resolution shape
descriptors with higher resolution shape descriptors for object detection and
classification. ‘We then plan to extend the system in order to consider the ATR
example of detecting aircraft in aerial images.
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Figure 2: Curvature profiles for two different breast (MRI) lesions

Table 1: Variance of curvature profiles for lesions 1 & 2

scale lesion 1 lesion 2
1 0.45 1.34
2 0.40 1.24
4 0.66 1.91
8 0.79 2.63
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16 0.86 3.68

Mercury Computers

As mentioned in our last report, we have initiated talks with Mercury
Computers regarding possible commercial applications of our Neural
Network/Pyramid Software to problems in ATR and biomedical imaging. Mercury
is a manufacturer of high-end parallel computer hardware, supplying platforms for
both ATR and biomedical image processing. Since our last report, Mercury has
visited Sarnoff (Mercury visitors included Bruce Beck, VP, Network Systems; Don
Berry, Director, Commercial Products Group; Chris Stakutis, Product Manager) and
is interested in our technology. They requested a second meeting in June/July to
discuss the technologies and a potential partnership in further detail.

Acceptance of paper in Neural Networks, Special Issue on ATR

Our paper entitled "Integrating Neural Networks with Image Pyramids to
Learn Target Context" was accepted for publication in the Special ATR issue of
Neural Networks

Acceptance of paper for International Conference on Image Processing

(ICIP95)

Our paper entitled "A Hierarchical Neural Network Architecture that Learns
Target Context: Applications to Digital Mammography" was accepted for publication
and presentation at ICIP95.

NIPS Paper submitted

A paper titled “Training neural networks with uncertain object positions”
was submitted for presentation at the 1995 Neural Information Processing Systems
Conference.

Summary of Substantive Information Derived from Special Events:

None.

Problems Encountered and/or Anticipated:

Because of the advances we are making, we have spent ahead of schedule,
and expect to have spent the currently provided funds by the middle of June. Work
will stop at that time, unless we decide to spend in advance.
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Action Required by the Government:

We have contacted COTR Tom McKenna, asking for a letter stating the
probability of our receiving the next funding increment. We will spend in advance
only if this probability is quite high.

ARPA TU program management is expected to visit us on July 7. We are
- preparing a presentation of our progress and the project status.

Financial Status

1. Amount currently provided on contract: ~ $425,740
2. Expenditures and commitments to date: ~ $412,682
3. Funds required to complete work: $251,130
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